
observations on the simon block cipher family

Stefan Kölbl1 Gregor Leander2 Tyge Tiessen1

August 17, 2015
1DTU Compute, Technical University of Denmark, Denmark

2Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany



lightweight cryptography



Lightweight Cryptography

What is Lightweight Cryptography?

∙ Design primitives for resource-constraint environments like RFID
tags.

∙ Lot of attention over the last few years.
∙ NIST started to investigate the possibility to standardize primitives.

Design Criteria

∙ Chip-area
∙ Latency
∙ Code-size
∙ ...
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SIMON

Simon is a family of block ciphers designed by NSA.

∙ “Published” in 2013 on the ePrint archive.
∙ Lightweight design for hardware.

block size key sizes

32 64
48 72, 96
64 96, 128
96 96, 144
128 128, 192, 256
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SIMON

Feistel Network

∙ Simple round function
∙ Between 32 and 72 rounds

S8

S1

S2

∧

Ki

4



SIMON

Cryptanalysis of Simon

∙ No (public) cryptanalysis or security arguments from the
designers.

∙ Many contributions by the cryptographic community.
∙ Attacks cover up to 74% of the rounds.
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properties of simon



Differential and Linear

Any cipher should have reasonable security margin against
differential and linear cryptanalysis.

∙ For SPN designs easier to show bounds.
∙ Difficult for ARX, Simon.
∙ Best attacks on Simon are based on differential and linear
cryptanalysis.

7



Differential Cryptanalysis

Differential Cryptanalysis:

∙ Observe how difference propagate through the round function.
∙ Find correlations between input and output difference.
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Differential Cryptanalysis

We are interested in:
∙ Probability for one round:

Pr(α f−→ β)

∙ Differential characteristics:

Pr(α f−→ β
f−→ γ)

∙ Differentials:∑
x
Pr(α f−→ x f−→ γ)
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Differential and Linear

For the analysis we use an equivalent representation for Simon
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Differential and Linear

We look at a message m = (mn−1, . . . ,m1,m0) and an input
difference d = (dn−1, . . . ,d1,d0).

The output difference f(m)⊕ f(m⊕ d) is then given by:

Di(m,d) =


0, if di = 0 and di−1 = 0

mi, if di = 0 and di−1 = 1
mi−1, if di = 1 and di−1 = 0
mi ⊕mi−1, if di = 1 and di−1 = 1 .

(1)
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Differential and Linear

Let us now look at a first example. Let n = 6, and d = 001010. We
then calculate D(m,d) using the above bitwise definition of D:

i 5 4 3 2 1 0

d 0 0 1 0 1 0
S1(d) 0 1 0 1 0 0

D(m,d)

0 m4 m2 m2 m0 0

. (2)

Resulting difference only depends on m0,m2,m4. Therefore we have
8 possible output differences.
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Differential and Linear

Can compute the differential probability with simple bit operations.

The bits which can be non-zero at the output:

varibits = α ∨ S1(α) (3)

The bits which have to be equal to their right neighbour:

doublebits = α ∧ S1(α) ∧ S2(α) (4)
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Differential and Linear

For our previous example:

varibits = 011110
doublebits = 001000

Possible output differences:

000000
000010
001100
001110
010000
010010
011100
011110
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Differential and Linear

A valid differential (α → β) has to satisfy:

∙ There can only be a difference at βi, if varibitsi is equal to 1.
∙ If doublebitsi is 1, then βi = βi−1.

The probability is then given by:

Pr(α → β) = 2−wt(varibits⊕doublebits) (5)
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Differential and Linear

Apply affine transformation for Simon round function.

∙ Proofs in the paper.
∙ Similar approach for linear cryptanalysis.
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finding optimal differential and
linear characteristics



Optimal Characteristics

We are interested in differential and linear characteristics with high
probability.

∙ We use an approach based on SAT/SMT solvers, similar to results
on Salsa20 [MP13] or NORX [AJN15].

∙ Gives upper bounds on the probability.
∙ Estimate probability of the differentials.
∙ Open Source1

1https://github.com/kste/cryptosmt
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Optimal Characteristics

xi yi

S8

S1

S2

xi+1 yi+1

zi Constraints:
∙ Use our previous observations on
varibits and doublebits.

∙ Probability for one round is
wi = wt(varibits⊕ doublebits).
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Lower Bounds

Use this to find characteristic with probability 2−w:

∙ Add constraints for each round.

∙ Check if w =
r−1∑
i=0

wi.

∙ Increase w if no solution was found.

We ran experiments for Simon32, Simon48 and Simon64.
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Lower Bounds
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Differentials

What about differentials?

∙ Often assumed that probability of the best characteristics can be
used to estimate probability of the best differential.

∙ Only inaccurate estimate for Simon.

We estimate the probability of a differential

∙ Add constraints for each round.
∙ Set (x0, y0) = ∆in and (xr, yr) = ∆out.
∙ Find all solutions for increasing values of w.
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Differentials

We can determine the interval for the characteristics contributing to
a differential [wmin,wmax].

∙ Covering the whole interval is computationally expensive.
∙ Gives better estimate than previous results.

Cipher Rounds wmin wmax log2(p)

Simon32 13 36 91 (91) −28.79
Simon48 16 50 256 (68) −44.33
Simon64 21 68 453 (89) −57.57

25



Differentials
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Differentials
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rotation constants



Rotation Constants

Possible Criteria:

∙ Simplicity
∙ Implementation costs
∙ Security?

Are there parameters which are better with regard to some metrics?
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Rotation Constants

Basic test for diffusion:

Block size 32 48 64 96 128

Standard parameters 7 8 9 11 13
Best possible 6 7 8 9 10
Rank 2nd 2nd 2nd 3rd 4th
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Rotation Constants

Bounds for differential and linear characteristics give us some
interesting candidates:

∙ The bounds are as good as the original parameters or slightly
better.

∙ Simon[12, 5, 3] offers best diffusion.
∙ Simon[7, 0, 2] offers best diffusion, when b = 0.
∙ Simon[1, 0, 2] has bad diffusion, but good bounds.

What effect do the rotations constants have on differentials?
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Rotation Constants
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Conclusion

Contributions:

∙ Constant time algorithm for differential probability.
∙ Bounds on the probability of differential/linear characteristics.
∙ Compared quality of rotation constants.

Open Problems:

∙ More refined analysis of the parameter space.
∙ Find efficient method to determine differential effect for different
constants.
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questions?
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